Instance Optimal Decoding and the Restricted Isometry Property
نویسندگان
چکیده
In this paper, we address the question of information preservation in ill-posed, non-linear inverse problems, assuming that the measured data is close to a low-dimensional model set. We provide necessary and sufficient conditions for the existence of a so-called instance optimal decoder, i.e., that is robust to noise and modelling error. Inspired by existing results in compressive sensing, our analysis is based on a (Lower) Restricted Isometry Property (LRIP), formulated in a non-linear fashion. We also provide sufficient conditions for non-uniform recovery with random measurement operators, with a new formulation of the LRIP. We finish by describing typical strategies to prove the LRIP in both linear and non-linear cases, and illustrate our results by studying the invertibility of a one-layer neural net with random weights.
منابع مشابه
Generalized Null Space and Restricted Isometry Properties
We propose a theoretical study of the conditions guaranteeing that a decoder will obtain an optimal signal recovery from an underdetermined set of linear measurements. This special type of performance guarantee is termed instance optimality and is typically related with certain properties of the dimensionality-reducing matrix M. Our work extends traditional results in sparse recovery, where ins...
متن کاملOn Lp minimisation, instance optimality, and restricted isometry constants for sparse approximation
We extend recent results regarding the restricted isometry constants (RIC) and sparse recovery using l minimisation. Here we consider the case of the sparse approximation of compressible rather than exactly sparse signals. We begin by showing that the robust null space property used in [3] characterises the robustness of the estimation of compressible signals by l mimisation for all l norms, 0 ...
متن کاملRobustness Properties of Dimensionality Reduction with Gaussian Random Matrices
In this paper we study the robustness properties of dimensionality reduction with Gaussian random matrices having arbitrarily erased rows. We first study the robustness property against erasure for the almost norm preservation property of Gaussian random matrices by obtaining the optimal estimate of the erasure ratio for a small given norm distortion rate. As a consequence, we establish the rob...
متن کاملA Negative Result Concerning Explicit Matrices With The Restricted Isometry Property
In this note, we prove that matrices whose entries are all 0 or 1 cannot achieve good performance with respect to the Restricted Isometry Property (RIP). Most currently known deterministic constructions of matrices satisfying the RIP fall into this category, and hence these constructions suffer inherent limitations. In particular, we show that DeVore’s construction of matrices satisfying the RI...
متن کاملOn the Certification of the Restricted Isometry Property
Compressed sensing is a technique for finding sparse solutions to underdetermined linear systems. This technique relies on properties of the sensing matrix such as the restricted isometry property. Sensing matrices that satisfy this property with optimal parameters are mainly obtained via probabilistic arguments. Given any matrix, deciding whether it satisfies the restricted isometry property i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1802.09905 شماره
صفحات -
تاریخ انتشار 2018